101

C12	0.0845(2)	0 3235 (4)	0 1042 (2)	0.0200.00
C13	0.0626 (2)	0.3233(4)	0.1342 (2)	0.0290 (9)
C14	0.0020 (2)	0.4364 (4)	0.1275 (2)	0.0351 (10)
014	-0.0512 (3)	0.4974 (5)	0.0852 (2)	0.0439 (12)
CIS	-0.1447 (3)	0.4378 (5)	0.1085 (2)	0.0456 (11)
C16	-0.1248 (3)	0.3249 (5)	0.1750 (2)	0.0440 (11)
C17	-0.0108 (2)	0.2696 (4)	0.2182(2)	0.0386 (10)

Table 2. *Geometric parameters* (Å, °)

0—С9	1.226 (4)	C8aC9	1,483 (3)
C1C2	1.372 (4)	C8a-C10a	1,408 (4)
C1C9a	1.401 (3)	C9C9a	1.482 (4)
C2-C3	1.379 (5)	C10-C10a	1.479 (4)
C3-C4	1.383 (4)	C10-C11	1 346 (4)
C4—C4a	1.400 (4)	C11-C12	1.483 (3)
C4a—C9a	1.398 (4)	C12-C13	1.385 (4)
C4a—C10	1.486 (3)	C12-C17	1.392 (4)
C5C6	1.373 (5)	C13-C14	1.387 (4)
C5—C10a	1.400 (3)	C14-C15	1.377 (5)
C6C7	1.385 (5)	C15-C16	1.376 (5)
C7C8	1.376 (4)	C16-C17	1.385 (4)
C8—C8a	1.388 (4)		
C2-C1-C9a	120.8 (3)	C1C9aC9	118.7 (3)
C1-C2-C3	119.4 (2)	C4aC9aC9	121.1 (2)
C2-C3-C4	120.8 (3)	C10a-C10-C11	124.1 (2)
C3C4C4a	120.8 (3)	C10a-C10-C4a	115.9 (2)
C4—C4a—C9a	118.0 (2)	C4a-C10-C11	119.8 (2)
C4—C4a—C10	122.0 (3)	C5-C10a-C8a	117.7 (3)
C9a—C4a—C10	119.9 (2)	C5-C10a-C10	122.5 (3)
C6—C5—C10a	120.7 (3)	C8a-C10a-C10	119.7 (2)
C5—C6—C7	121.3 (3)	C12-C11-C10	130.3 (3)
C6—C7—C8	118.8 (3)	C13-C12-C17	118.2 (2)
C7—C8—C8a	121.1 (3)	C13-C12-C11	121.8 (3)
C8—C8a—C9	118.7 (3)	C17-C12-C11	119.8 (2)
C8C8aC10a	120.2 (2)	C14-C13-C12	121.1 (3)
C9—C8a—C10a	120.8 (2)	C15-C14-C13	119.7 (3)
C9a—C9—O	121.6(2)	C16-C15-C14	120.1 (3)
C9a—C9—C8a	116.6 (2)	C17-C16-C15	120.1 (3)
0—C9—C8a	121.6 (3)	C12-C17-C16	120.7 (3)
C1—C9a—C4a	120.2 (3)		

SHS and PMR acknowledge the support of the Robert A. Welch Foundation (grant F-0017).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55778 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1020]

References

- Harnik, E. & Schmidt, G. M. J. (1954). J. Chem. Soc. pp. 3295-3302. Kaftory, M., Apeloig, Y. & Rappaport, Z. (1985). J. Chem. Soc. Perkin
- Trans. 2, pp. 29-37.
- Khalaf, A. A. & Roberts, R. M. (1972). J. Org. Chem. 37, 4227-4235.
- Low, C. -E. & Roberts, R. M. (1973). J. Org. Chem. 38, 1909-1913.
- Prasad, R. S. & Roberts, R. M. (1991). J. Org. Chem. 56, 2998-3000.
- Roberts, R. M. & Abdel-Baset, M. B. (1976). J. Org. Chem. 41, 1698-1701.
- Roberts, R. M., Anderson, G. P. Jr, Khalaf, A. A. & Low, C. -E. (1971). J. Org. Chem. 36, 3342-3345.
- Roberts, R. M., Bantel, K. -H. & Low, C. -E. (1973). J. Org. Chem. 38, 1903-1908.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Silverman, J. & Yannoni, N. F. (1967). J. Chem. Soc. B, pp. 194-202. Spek, A. L. (1990). 40th Meet. Am. Crystallogr. Assoc., New Orleans,
- LA, USA. Abstract PM04.

Acta Cryst. (1993). C49, 1015–1017

Structures of Pyrazole Derivatives. II. A Potential Bioisoster of Acetazolamide

J. IULEK[†] AND J. ZUKERMAN-SCHPECTOR^{*}

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, SP, Brazil

ELIEZER J. BARREIRO AND ANTONIO C. C. FREITAS

Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, Universidade Federal de Rio de Janeiro, 21941 Rio de Janeiro, RJ, Brazil

(Received 11 August 1992; accepted 15 Ocotber 1992)

Abstract

In 5-Chloro-3-methyl-1-phenyl-4-pyrazolesulphonamide, the phenyl and pyrazole rings are planar making a dihedral angle of 54.4 (2)°. The molecular packing involves an intermolecular hydrogen bond: N(3)…N(2ⁱ) = 2.951 (8), N(2ⁱ)…H'(N3) = 1.987 (6) Å, N(3)—H'(N3)…N(2ⁱ) = 154.8 (4)° [symmetry operation: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$].

Comments

Among the sulfonamide derivatives commonly used as diuretics, one of the most important is acetazolamide (2) (de Stevens, 1963) which is commercially available in Brazil as DIAMOX (DEF, 1991). Because of the close bioisosteric relationship between the pyrazole and the 1,3,4-thiodiazole groups, and following a research program aimed at synthesizing functionalized potentially bioactive pyrazoles (Caracelli, Zukerman-Schpector, Barreiro & Freitas, 1992), compound (1) was prepared (Freitas, 1991). In order to determine its overall conformation a threedimensional crystal structure determination was undertaken.

† Permanent address: Departamento de Química, Universidade Estadual de Ponta Grossa, PR, Brazil.

© 1993 International Union of Crystallography

Cl

S

0(1) O(2)

N(1)

N(2) N(3) C(3) C(4)C(5) C(6) C(7)

C(8) C(9) C(10) C(11) C(12)

As can be seen in Table 2, the internal and external angles of the pyrazole ring follow the set of empirical rules given by Bonati & Bovio (1990), that is (a) N(1)—N(2)—C(3) is smaller than N(2)— N(1)-C(5); (b) N(2)-C(3)-C(4) is larger than N(1)-N(2)-C(3), C(3)-C(4)-C(5) and N(1)-C(5)C(5)—C(4); (c) C(3)—C(4)—C(5) is not the largest internal angle; (d) N(2)—N(1)—C(6) is smaller than C(5)-N(1)-C(6); (e) N(2)-C(3)-C(12) is smaller than C(4)—C(3)—C(12); and (f) S—C(4)—C(3) and S-C(4)-C(5) are equal.

The C(4)—C(5) distance is marginally shorter than C(3)—C(4) as expected in neutral pyrazole rings (Zukerman-Schpector, Castellano, Oliva, Massabni & Pinto, 1984, and references therein).

The pyrazole and phenyl rings are planar to within experimental accuracy, σ_{av} [defined as $(\sum_i d_i^2/d_i^2)$ $N-3)^{1/2}$ being 0.002 and 0.018 Å, respectively.

Fig. 1. Structure of (1).

Mo $K\alpha$ radiation

Cell parameters from 22

 $0.25 \times 0.20 \times 0.10 \text{ mm}$

Crystal source: from ethanol

 $\lambda = 0.70926 \text{ Å}$

reflections

 $\mu = 0.45 \text{ mm}^{-1}$

 $\theta = 11 - 20^{\circ}$

T = 293 K

Colourless

 $R_{\rm int} = 0.012$

 $h = -15 \rightarrow 14$

2 standard reflections

frequency: 30 min

intensity variation: $\pm 0.3\%$

 $\theta_{\rm max}$ = 28°

 $k = 0 \rightarrow 17$

 $l = 0 \rightarrow 11$

Irregular

Experimental

Crystal data

C10H10CIN3O2S $M_r = 271.73$ Monoclinic Cc a = 12.135 (2) Å b = 13.572 (1) Å c = 8.750(1) Å $\beta = 118.37 (1)^{\circ}$ V = 1268.0 (6) Å³ Z = 4 $D_{\rm x} = 1.423 {\rm Mg m}^{-3}$

Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: Empirical $T_{\rm min} = 0.69, T_{\rm max} = 1.65$ 1352 measured reflections 1298 independent reflections 738 observed reflections $[I > 3\sigma(I)]$

Refinement

Refinement on F Final $R = 0.043$ wR = 0.044 S = 1.53 738 reflections 153 parameters H atoms refined, $U_{overall} =$	$w = (\sigma^{2} F_{o} + 0.0003 F_{o} ^{2})^{-1}$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from SHELX76
H atoms refined, $U_{\text{overall}} =$	from SHELX76
0.14 (1) Å ²	

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	B_{eq}
0.0672	-0.0320 (2)	0.5247	7.33 (8)
0.3405 (2)	0.0584 (2)	0.5244 (4)	5.38 (6)
0.3185 (5)	-0.0444 (4)	0.4996 (9)	7.7 (2)
0.4025 (5)	0.1082 (5)	0.4420 (8)	8.5 (3)
-0.0001 (5)	0.1454 (4)	0.3812 (8)	4.3 (2)
0.0412 (4)	0.2275 (4)	0.3377 (9)	5.1 (2)
0.4254 (5)	0.0763 (4)	0.7276 (8)	4.8 (2)
0.1606 (6)	0.2098 (5)	0.3821 (9)	4.6 (2)
0.1958 (6)	0.1159 (5)	0.4533 (9)	4.1 (2)
0.0907 (6)	0.0779 (5)	0.4498 (9)	4.4 (2)
-0.1284 (6)	0.1402 (5)	0.345 (1)	4.7 (2)
-0.1726 (7)	0.2149 (6)	0.410(1)	5.7 (3)
-0.2985 (8)	0.2120 (7)	0.371 (1)	7.0 (3)
-0.3744 (8)	0.1354 (8)	0.277 (2)	7.6 (4)
-0.3285 (7)	0.0629 (7)	0.212 (1)	7.2 (3)
-0.2047 (7)	0.0651 (5)	0.244 (1)	5.8 (3)
0.2357 (8)	0.2865 (6)	0.348 (1)	9.5 (4)

Table 2. Geometric parameters (Å, °)

S-O(1)	1.418 (6)	SO(2)	1.435 (8)
SN(3)	1.594 (7)	S-C(4)	1.744 (8
N(1) - N(2)	1.349 (9)	N(1)—C(5)	1.34 (1)
N(1) - C(6)	1.44 (1)	N(2)—C(3)	1.33 (1)
C(3)C(4)	1.393 (9)	C(3)—C(12)	1.50 (1)
C(4) - C(5)	1.36(1)	C(5)—Cl	1.707 (7
C(6)C(7)	1.39(1)	C(6)—C(11)	1.38 (1)
C(7)C(8)	1.40(1)	C(8)—C(9)	1.37 (1)
C(9)—C(10)	1.38 (1)	C(10)C(11)	1.39 (1)
O(1)SO(2)	119.5 (4)	O(1)—S—N(3)	107.2 (4
O(1) - S - C(4)	107.5 (4)	O(2)—S—N(3)	105.9 (4
D(2) - S - C(4)	106.8 (4)	N(3)—S—C(4)	109.7 (4
N(2) - N(1) - C(5)	110.8 (6)	N(2)—N(1)—C(6)	119.2 (6
C(5) - N(1) - C(6)	129.9 (6)	N(1) - N(2) - C(3)	105.5 (6
N(2) - C(3) - C(4)	110.8 (7)	N(2) - C(3) - C(12)	119.7 (7)
C(4) - C(3) - C(12)	129.5 (7)	SC(4)C(3)	127.7 (6
S—C(4)—C(5)	127.7 (6)	C(3)—C(4)—C(5)	104.6 (6
N(1) - C(5) - C(4)	108.3 (6)	N(1)C(5)Cl	121.3 (6)
C(4)—C(5)—Cl	130.4 (6)	N(1)-C(6)-C(7)	117.6 (7)
N(1)—C(6)—C(11)	120.4 (7)	C(7)-C(6)-C(11)	122.0 (7
C(6)—C(7)—C(8)	118.0 (8)	C(7)—C(8)—C(9)	120.8 (9)
C(8)—C(9)—C(10)	120 (1)	C(9)-C(10)-C(11)	120.7 (9)
C(6) - C(11) - C(10)	118.5 (8)		

Data were corrected for Lp and absorption (Walker & Stuart, 1983) effects. The structure was solved by direct methods. H atoms were found in difference synthesis and included as fixed contributors with an overall isotropic thermal parameter. Programs used were: SHELXS86 (Sheldrick, 1985), SHELX76 (Sheldrick, 1976) and ORTEP (Johnson, 1965). The refinement was by blocked-matrix least-squares methods. Most of the calculations were performed on a VAX 6420 computer at the Instituto de Física e Química de São Carlos.

This work has received partial support from FAPESP, CNPq, CAPES and FINEP. One of us (JZ-S) would like to thank FAPESP (proc. 91/2890-2) for a scholarship, the Weizemann Institute of Science for providing X-ray facilities and Dr F. Frolow for the data collection.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55753 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: L11029]

References

- Bonati, F. & Bovio, B. (1990). J. Crystallogr. Spectrosc. Res. 20, 233-244.
- Caracelli, I., Zukerman-Schpector, J., Barreiro, E. J. & Freitas, A. C. C. (1993). Acta Cryst. C49, 633-635.
- DEF (1991). Dicionario de Especialidades Farmaceuticas (1991-1992). Editora de Publicações Científicas Ltda., São Paulo, Brazil.
- Freitas, A. C. C. (1991). PhD thesis. Univ. Federal do Rio de Janeiro, RJ, Brazil.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Stevens, G. de (1963). Diuretics, Chemistry and Pharmacology, pp. 47-80. New York: Academic Press.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1017-1018

Manchester M60 1QD, England

Triphenylphosphonium Bromide

(Received 28 July 1992; accepted 10 December 1992)

N. BRICKLEBANK, S. M. GODFREY, C. A. MCAULIFFE

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88,

Zukerman-Schpector, J., Castellano, E. E., Oliva, G., Massabni, A. C. & Pinto, A. D. (1984). Can. J. Chem. 62, 725-728. 54, 1968-1973] indicates a much greater cation-anion interaction, analogous to molecular Ph₃PBr₂ [Bricklebank, Godfrey, McAuliffe, Mackie & Pritchard (1992). J. Chem. Soc. Chem. Commun. pp. 355-356], which has a novel four-coordinate spoke structure with significant covalent Br-Br interaction.

Comment

The phosphonium salt reported here is an example of the type of product which can be expected if the anhydrous anaerobic conditions required for reacting metal powders with dihalophosphoranes are not rigorously maintained. The formation of triphenylphosphonium halides from triphenyldihalophosphanes in moist solvents has been reported previously (Beveridge, Harris & Payne, 1966). The title compound was isolated from the filtrate of the reaction of Ph₃PBr₂ with Crmetal powder, which had been penetrated by moisture (Godfrey, Kelly, McAuliffe, Mackie, Matear & Pritchard, 1991). Despite their ubiquity, the only triphenylphosphonium halide structure reported to date is that of (2-hydroxyphenyl)diphenylphosphonium bromide (Schmutzler, Schomburg, Bartsch & Stelzer, 1984). The presence of the hydroxy substituent in this compound involves the P-H group in hydrogen bonding, which is impossible in the title compound.

Fig. 1. The title molecule, including atomic numbering scheme, drawn using ORTEPII (Johnson, 1976).

Experimental

Crystal data	
$C_{18}H_{16}P^{+}.Br^{-}$	Mo $K\alpha$ radiation
$M_r = 343.2$	$\lambda = 0.7107 \text{ Å}$
Orthorhombic	Cell parameters from 25
Pnma	reflections
a = 10.951 (5) Å	$\theta = 10.42 - 24.52^{\circ}$
b = 12.269 (3) Å	$\mu = 2.66 \text{ mm}^{-1}$
c = 11.754 (4) Å	T = 296 K
$V = 1579 (1) Å^3$	Trapezoid
Z = 4	$0.30 \times 0.20 \times 0.20$ mm
$D_r = 1.443 \text{ Mg m}^{-3}$	Colourless

0108-2701/93/051017-02\$06.00

AND R. G. PRITCHARD

The structure consists of unique $[C_{18}H_{15}PH]^+Br^-$ ion pairs, which are bisected by a crystallographic mirror plane. The proton is bonded to the P atom [P--H 1.61 (9) Å] and is directed towards a Br anion $[P \cdots Br 2.20 (9) Å]$. Although the structure is ionic, comparison with phosphonium bromide $[PH_4^+.Br^-, P \cdots Br$ 4.029 (4) Å; Schröder & Rush (1971). J. Chem. Phys.

2\$06.00 © 1993 International Union of Crystallography

1017